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Abstract

In this paper we present a formulation of spectral vanishing viscosity (SVV) for the stabilisation of spectral/hp ele-
ment methods applied to the solution of the incompressible Navier–Stokes equations. We construct the SVV around a
filter with respect to an orthogonal expansions, and prove that this methodology provides a symmetric semi-positive
definite SVV operator. After providing a few simple one- and two-dimensional examples to demonstrate the utility
of the SVV, we examine how it can be applied to a spectral/hp element discretisation of the Navier–Stokes equations
using a velocity correction splitting scheme. We provide three fluid flow examples to help illustrate the pros and cons of
this approach on stability and accuracy.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The computational fluid mechanics literature is replete with examples of the addition of mechanisms to
stabilise solution techniques for the Navier–Stokes equations. The simplest of these mechanisms is the addi-
tion of second-order dissipative operators as advocated by von Neumann and Richtmyer [1]. The addition
of such dissipative operators in the context of high-order numerical methods is of great interest. In partic-
ular, the formulation of dissipative operators which provide sufficient dissipation to stabilise the solution
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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while not degrading significantly the convergence properties of the method are desired. As an alternative to
the introduction of additional dissipative (stabilising) operators to the original governing equations, Kirby
and Karniadakis [2] showed that both stability and accuracy of spectral/hp element discretisation of the
incompressible Navier–Stokes equations can be greatly influenced through consistent-integration of the
nonlinear terms [3]. Exact integration provides a true Galerkin projection of the nonlinear terms and hence
removes aliasing errors (i.e. it is essentially polynomial de-aliasing). However one concern of applying con-
sistent-integration is that it is costly. In the case of the incompressible Navier–Stokes, O([3P/2]Dim) instead
of O([P]Dim) points per element (where P is the polynomial order) are necessary to accurately integrate the
nonlinear terms. This notably increases the total number of floating point operations (and storage) re-
quired. A further concern is that aliasing due to the nonlinear terms may not be the only source of insta-
bility within the simulation.

In light of these observations, many have questioned whether there are alternative means of stabilising
the solution which are both inexpensive and do not degrade accuracy. It has been proposed that polynomial
filtering [4] may provide a more computationally efficient means of removing the effects of polynomial ali-
asing and other destabilising influences. Such filtering techniques have been successfully employed to sta-
bilise spectral element polynomial methods [5–7].

The purpose of this paper is to formulate a symmetric, positive semi-definite spectral vanishing viscosity
(SVV) method for spectral/hp element methods in hybrid shaped domains extending the work of [8]. In
detailing this formulation we demonstrate the requirements on the filter projection to maintain discrete
symmetry of the SVV operator and provide fluid flow examples which illustrate the pros and cons of this
methodology.

1.1. Outline

The layout of this paper is as follows. In Section 2 we provide the mathematical and algorithmic descrip-
tion of the spectral vanishing viscosity method. We first provide the motivation for the methods from Fou-
rier methods and then proceed to outline spectral vanishing viscosity (SVV) for spectral/hp element
methods. We then provide two demonstrative examples in one-dimension and in two-dimensions which
help elucidate the concepts. In Section 3 we outline how the SVV can be added to a velocity correction split-
ting scheme to discretise the incompressible Navier–Stokes equations. In Section 4 we provide three demon-
strative fluid flow examples demonstrating the effects of SVV. We conclude in Section 5 with a summary of
this work and a discussion of future challenges.
2. Mathematical and algorithmic description

2.1. Motivation

Tadmor [9] first introduced the concept of spectral vanishing viscosity (SVV) using the inviscid Burgers
equation
o

ot
uðx; tÞ þ o

ox
u2ðx; tÞ

2

� �
¼ 0; ð1Þ
subject to given initial and boundary conditions. The distinct feature of solutions to this problem is that
spontaneous jump discontinuities (shock waves) may develop, and hence a class of weak solutions can
be admitted. Within this class, there are many possible solutions, and in order to single out the physically
relevant solution an additional entropy condition is applied, of the form
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o

ot
u2ðx; tÞ

2

� �
þ o

ox
u3ðx; tÞ

3

� �
6 0. ð2Þ
In numerical implementations, spectral methods are often augmented with smoothing procedures in
order to reduce the Gibbs oscillations [10] associated with discontinuities arising at the domain boundaries
or due to under-resolution. However, with nonlinear problems, convergence of the Fourier method, for
example, may fail despite additional smoothing of the solution. Tadmor [9] introduced the spectral vanish-
ing viscosity method, which adds a small amount of controlled dissipation that satisfies the entropy condi-
tion, yet retains spectral accuracy. It is based on viscosity solutions of nonlinear Hamilton–Jacobi
equations, which have been studied systematically in [11]. Specifically, the viscosity solution for the Burgers
equation has the form
o

ot
uðx; tÞ þ o

ox
u2ðx; tÞ

2

� �
¼ � o

ox
Q�

ou
ox

� �
; ð3Þ
where �(! 0) is a viscosity amplitude and Q� is a viscosity kernel, which may be nonlinear and, in general, a
function of x. Convergence may then be established by compensated compactness estimates combined with
entropy dissipation arguments [9]. To respect spectral accuracy, the SVV method makes use of viscous reg-
ularisation and Eq. (3) may be rewritten in discrete form (retaining N modes) as
o

ot
uN ðx; tÞ þ

o

ox
PN

u2ðx; tÞ
2

� �� �
¼ � o

ox
QN �

ouN

ox

� �
; ð4Þ
where the star (*) denotes convolution and PN is a projection operator. QN is a (possibly nonlinear) viscos-
ity kernel, which is only activated for high wave numbers. In Fourier space, this kind of spectral viscosity
can be efficiently implemented as multiplication of the Fourier coefficients of ûN with the Fourier coeffi-

cients of the kernel bQN , i.e.
�
o

ox
QN �

ouN

ox

� �
¼ ��

X
P cut6jkj6N

k2 bQkðtÞûkðtÞeikx;
where k is the wave number, N the number of Fourier modes, and Pcut the wavenumber above which the
spectral vanishing viscosity is activated.

Originally, Tadmor [9] used
bQk ¼
0; jkj 6 P cut;

1; jkj > P cut;

�
ð5Þ
with �Pcut � 0.25 based on the consideration of minimising the total-variation of the numerical solution. In
subsequent work, however, a smooth kernel was used, since it was found that the C1 smoothness of bQk

improves the resolution of the SVV method. For Legendre pseudo-spectral methods, Maday et al. [12] used
� � N�1, activated for modes k > P cut � 5

ffiffiffiffi
N
p

, with
bQk ¼ e
� ðk�NÞ2

ðk�PcutÞ2 ; k > P cut. ð6Þ

Karamanos and Karniadakis [8] made the first extension of the spectral vanishing viscosity concept to
spectral/hp element methods. In [8], the general form of the SVV operation as presented by Tadmor is
maintained; however, polynomial filtering is used to mimic the convolution operator in Tadmor�s formu-
lation. In this work, SVV filtering was applied directly to the C0 hierarchical (linearly independent but
non-orthogonal) basis. Kirby and Karniadakis [13] proposed SVV filtering with respect to orthogonal
expansions, and demonstrated the concept in the context of LES modelling on incompressible turbulent
channel flows. Xu and Pasquetti [14] formulated SVV for nodal spectral elements and demonstrated the
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stabilisation effect within the context of cylinder flows. Finally Sirisup and Karniadakis [15] have demon-
strated the use of SVV stabilisation in the context of principle component analysis.

We present in Section 2.2 a formulation of SVV for spectral/hp elements [3] using a continuous Galerkin
formulation which filters on an orthogonal basis. This work extends the concepts mentioned in [13] by for-
mulating SVV using orthogonal expansions for one-, two- and three-dimensional spectral element discret-
isations, and we further demonstrate that the operator obtained is symmetric and semi-positive definite.

2.2. SVV for spectral/hp element methods

We define the multi-dimensional SVV operator over the solution domain as
SVVðuÞ ¼ �
XDim

i¼1

o

oxi
QDim �

ou
oxi

� �
. ð7Þ
To develop the spectrally vanishing viscosity approach in a multi-dimensional polynomial expansion, as
typically applied in a spectral/hp element expansion, we need to construct the Galerkin projection of Eq.
(7). Following standard finite element construction we take the inner product of (7) with respect to a C0

continuous test function v and apply the divergence theorem to arrive at an elemental operator of the form
Se
VVðv; uÞ ¼ �

XDim

i¼1

ov
oxi

;QDim �
ou
oxi

� �
Xe

; ð8Þ
where ð ; ÞXe denotes the Legendre inner product in the elemental region x 2 Xe. In the above expression we
understand that the expansion spaces of v, u are both in a globally C0 continuous space and so the element
operator Se

VVðv; uÞ can be assembled into a global operator using the standard global assembly process, see
[3].

To illustrate the construction and numerical implementation of the operator (8), in Section 2.2.1 we
introduce some matrix notation which can be applied to construct the elemental Laplacian operator, fol-
lowing [3]. Then in Section 2.2.3 we use the matrix notation to construct the SVV filter and further dem-
onstrate that a projection to an orthogonal elemental basis is necessary to maintain the symmetry of the
SVV operator.

2.2.1. Matrix formulation of the Laplacian operator

We consider the elemental weak Laplacian matrix which arises from a standard Galerkin projection of
the form
Le½j�½i� ¼ r/j;r/i

� 	
Xe . ð9Þ
In Eq. (9), /i(x), x = [x1,x2,x3] is a multi-dimensional expansion basis which could be either modal or
nodal in form and spans a standard polynomial space within the mapped standard finite element region.
In a standard spectral/hp element implementation this inner product in Eq. (9) is typically evaluated using
Gaussian quadrature, the zeros of which we denote by a set of points xj. We can therefore introduce a basis
matrix B which has columns of /i(x) evaluated at the quadrature points xj, i.e.
B½j�½i� ¼ /iðxjÞ.

The location of the points xj is clearly dictated by the type and order of the Gaussian quadrature adopted.
We note that if a nodal expansion, based on the Lagrange cardinal function, is chosen through a set of
Gauss–Lobatto–Legendre quadrature points (as is typically the case in standard spectral element methods)
then B becomes an identity matrix, i.e. B = I. Consistent with the definition of B we can define a derivative
matrix Dl which evaluates the derivative of /i(x) in the xl direction at the quadrature points, i.e.,
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ðDlBÞ½j�½i� ¼
o/i

oxl






xj

or
o/i

oxl






xj

¼
X

k

Dl½j�½k� B½k�½i�.
Finally we define a diagonal matrix W whose diagonal contains the quadrature weights multiplied by the
Jacobian of the mapping from Xe to a standard region Xst evaluated at the quadrature points xj. The ele-
mental weak Laplacian matrix (9) can be defined in terms of the above matrices as
Le ¼
XDim

l¼1

BTDT
l WDlB; ð10Þ
where Dim is the dimension of the problem under consideration. The evaluation of the Laplacian matrix,
denoted by the matrix operations in Eq. (10), is exact for a polynomial expansion bases providing a suffi-
ciently high quadrature order is adopted and the elemental mapping to the standard region is linear. Even if
the mapping is nonlinear, providing it is well behaved the evaluation of the Laplacian from Eq. (10) will be
consistent with the overall spectral/hp element approximation.

We note that whilst the above matrix notation is convenient to highlight the operations required to eval-
uate the Laplacian matrices, the operations represented by the matrix multiplications are typically more
efficiently evaluated using a tensorial structure of the expansion bases. For example, in spectral/hp element
discretisations the basis /i(x) is often constructed using tensor product of one-dimensional polynomial
expansions. In this case the operations of the matrix B can be efficiently evaluated using the sum factori-
sation technique [3]. Having evaluated the expansion basis at a tensorial set of quadrature points, it is then
possible to use Kronecker delta property of the Lagrange polynomial through the quadrature points to
evaluate the derivatives as a series of one-dimensional operations. See [3] for more details on these imple-
mentation details.

2.2.2. Alternative matrix construction of the Laplacian system

An alternative matrix construction of the Laplacian system to that shown in Eq. (10) is
Le ¼
XDim

l¼1

ST
l M�1Sl; ð11Þ
where
M ¼ BTWB; Sl ¼ BTWDlB.
As we shall see in Section 2.2.3, the construction shown in Eq. (11) is convenient for the interpretation of
the SVV operator. We note that under the assumption of exact numerical integration (since we are only
considering polynomial expansions) the elemental mass matrix M and elemental matrix S are equivalent
to the analytical operations
M ½j�½i� ¼ ð/j;/iÞXe ; Sl½j�½i� ¼ /j;
o/i

oxl

� �
Xe

.

To demonstrate the equivalence between the Eqs. (10) and (11) we first note that M�1Sl is the Galerkin
projection of the derivative of the expansion basis o/i/oxl onto the original expansion basis /i(x), i.e.
/iðxÞ;
X

j

v̂j/jðxÞ
 !

Xe

¼ /iðxÞ;
X

j

ûj
o/j

oxl

 !
Xe

) v̂ ¼M�1Slû; ð12Þ
where û½i� ¼ ûi and v̂½i� ¼ v̂i. When the expansion basis is a polynomial in the elemental region Xe, which
typically implies that the mapping to the standard region is linear, the derivative of the expansion basis will
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also lie within the space of the original expansion. Therefore under a linear elemental mapping and using
exact numerical differentiation and differentiation we also note that
DlB ¼ BM�1Sl. ð13Þ
In general we interpret Eq. (13) as a Galerkin projection of the derivative of /i(x) back onto the expansion
basis. Therefore even if the expansion is not a polynomial in Xe, for example in a curvilinear domain, the
matrix operation BM�1Sl represents an approximation of the derivative of the expansion basis consistent
with the overall spectral/hp discretisation.

Finally inserting Eq. (13) into Eq. (10) we obtain
Le ¼
XDim

l¼1

BTDT
l WDlB ¼

XDim

l¼1

ST
l M�T BTWBM�1Sl.
Since the mass matrix is symmetric, M�T = M�1 and using the fact that M = BTWB we obtain
Le ¼
XDim

l¼1

ST
l M�1Sl.
2.2.3. Spectral/hp element spectrally vanishing viscosity
We now turn our attention to the construction of the spectral/hp SVV operator as defined in Eq. (8)

which as we have previously observed is similar in form to the Laplacian operator with a viscosity kernel
QDim. As discussed in Section 2.1 the viscosity kernel need not be explicitly evaluated in physical space but
can be interpreted as a convolution operator in a modal space. We therefore would like to project the deriv-
ative of the expansion to a modal space and apply an analogous polynomial SVV convolution operator.

We have already observed that M�1Sl in Eq. (12) is equivalent to projecting the derivative of the expan-
sion basis in the xl direction on to the same expansion basis. We can generalise this projection on to any
basis which spans the same polynomial space. Denoting by ~/iðxÞ, 0 6 i < Nmod a polynomial expansion
which spans the same space as /i(x), 0 6 i < Nmod we can define a basis matrix eB in an analogous fashion
to B, i.e.
eB½j�½i� ¼ ~/iðxjÞ.
Following the construction leading to Eq. (12) we note that the projection of the derivative of /i(x) onto the
expansion basis ~/iðxÞ is represented by the derivative operator
fM�1fSl ;
where
fM ¼ eBT
W eB; fSl ¼ eBT

WDlB.
The spectral/hp element SVV operator is then imposed by applying a filter bQ, which will be defined shortly,

to the projected derivative of the basis implied by the matrix operation fM�1fSl . In directly analogy to Eq.
(11) we can define the SVV operator (8) as
Se
VV½i�½j� ¼ �

XDim

l¼1

eST

l
bQfM�1eS l

 !
½i�½j� ¼ Se

VVð/i;/jÞ. ð14Þ
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2.2.4. Symmetry of discrete SVV system

We have yet to define any constraints on the modal expansion ~/iðxÞ. For any expansion basis /i(x) the
Galerkin projection leads to a weak Laplacian matrix Le which is symmetric semi-positive definite. From a
purely implementation point of view it is therefore attractive that the SVV system SVV is also symmetric
since the same matrix inversion techniques used on the Laplacian matrix can then be applied to the com-
bined Laplacian and SVV system. From Eq. (14) we observe that the system will be symmetric providing

that bQfM�1
is symmetric. As we shall see the definition of bQ is diagonal and so the symmetry of the SVV

system can be enforced if fM�1
is also diagonal.

In Karamanos and Karniadakis [8] the SVV filter was applied to the modal expansion coefficient of a
semi-orthogonal expansion basis originally proposed by Dubiner [16], see also [3]. This basis was also used
for the trial space of the spectral element expansion and so ~/iðxÞ ¼ /iðxÞ. Although using the same basis for
the SVV filter and elemental approximation is attractive from an implementation point of view, unfortu-
nately M is not diagonal in this case and so the SVV operator is not symmetric.

To enforce the mass matrix fM is diagonal necessarily implies that ~/ðxÞ is orthogonal (or at least dis-
cretely orthogonal). To be able to impose a diffusion on the high frequencies also implies that ~/ðxÞ should
be modal/hierarchical even if the original basis /(x) is nodal. For quadrilateral regions an appropriate
orthogonal basis is the tensor product of the Legendre polynomials which has also been adopted in the
spectral element SVV work of Xu and Pasquetti [14]. An orthogonal expansion for the triangle, which is
also the solution to a singular Sturm Liouville problem, also exists for the triangular region [3] and is de-
fined in Section 2.2.5.

2.2.5. Definition of the filtering operator bQ
To complete our definition of SVV in Eq. (14) we need to define the filtering operator bQ. Before doing so

we also require a definition of the ordering of the orthogonal expansion.
For a quadrilateral region in the standard space {�1 6 n1, n2 6 1} an orthogonal expansion is the tensor

product of Legendre polynomials Lp(n) of the form,
~/iðnÞ ¼ ~/iðp;qÞðnÞ ¼ Lpðn1ÞLqðn2Þ; 0 6 p; q 6 P ;
where P is the polynomial order of the expansion in the n1 and n2 directions. In this definition we under-
stand i(p,q) to represent the consecutive ordering of the pair (p,q) to the consecutive index i which can be
chosen as
iðp; qÞ ¼ p � ðP þ 1Þ þ q.
For a triangular region in the standard space {�1 6 n1, n2; n1 + n2 6 0} an orthogonal expansion based
upon a generalised tensor product can be defined as (see [3] for further details)
~/iðp;qÞðnÞ ¼ P 0;0
p ðg1Þ

1� g2

2

� �p

P 2pþ1;0
q ðg2Þ; 0 6 p; q; p þ q 6 P .
where
g1 ¼
2ð1þ n1Þ
ð1� n2Þ

� 1; g2 ¼ n2
and P a;b
p ðnÞ is the Jacobi polynomial and P is the linear polynomial order of the expansion space. For this

case we again understand i(p,q) to represent the consecutive ordering from the pair (p,q) to the matrix index
i which for this case be chosen as
iðp; qÞ ¼ 1

2
pð2P þ 3� pÞ þ q.
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Having transformed our local approximation to this orthogonal expansion we once again apply a filter on
all polynomial modes above a prescribed cutoff Pcut. We can therefore define a filter function as
bQ½iðp; qÞ�½iðp; qÞ� ¼ 0 p þ q 6 P cut;

e
� ðpþq�P Þ2

ðpþq�PcutÞ2 p þ q > P cut.

(
ð15Þ
The application of this type of filter to a tensor product expansion which spans a bilinear space typically
means that more than 50% of all modes are modified by the filter. An alternative approach would be to
filter modal contributions in a more tensor product type manner with a filter of the form
bQ½iðp; qÞ�½iðp; qÞ� ¼ 0 p and q 6 P cut;

e
� ðp�P Þðq�P Þ
ðp�PcutÞðq�PcutÞ otherwise.

(
ð16Þ
The filter defined in Eq. (15) filters with respect to total polynomial order and therefore restricts the unaf-
fected modes to the standard linear space (i.e. one level of a Pascals triangle). This filter can be applied to
both triangular and quadrilateral expansions. However the filter (16) leaves a bilinear space unaffected and
so can only be applied to a quadrilateral expansions which spans an appropriate bilinear space. All SVV
simulations accomplished in this paper have adopted the filter given in Eq. (15). An alternative filter for
quadrilateral elements which filters based upon the local elemental coordinate derivatives rather than the
global coordinate derivatives has been proposed by Xu and Pasquetti [14] which spans a similar space as
the filter in Eq. (16). All these filters have the common feature that only modes higher than Pcut are mod-
ified but the nature of the form of the high frequency decay has yet to be fully explored.

2.2.6. Positive semi-definiteness of Se
VV

To show that a matrix is positive semi-definite, we must demonstrate that
ûTeST bQfM�1eSû P 0 ð17Þ
for all non-zero real vectors û. We note that the Eq. (17) can be rewritten as
ðeSûÞT bQfM�1
ðeSûÞ.
Letting v̂ ¼ eSû, allows us to write this condition as
v̂T bQfM�1
v̂ P 0.
Since fM�1
is defined to be a diagonal positive definite matrix and bQ is a diagonal matrix in which all the

diagonal entries are greater than or equal to zero (due to the choice of the filtering function) we know that

v̂T bQfM�1
v̂ P 0 for all v̂.

2.3. Demonstrative numerical experiments

2.3.1. One-dimensional inviscid burgers equation
To demonstrate the influence of SVV, we first examine the standard Galerkin implementation of the

inviscid Burgers equation with stabilisation given by
ou
ot
þ 1

2

ou2

ox
¼ SVVðuÞ ð18Þ
where we take the stabilisation term SVV(u) as the one-dimensional version of Eq. (7). In Fig. 1 we plot the
solution of the inviscid Burgers equation at time T = 0.5 with and without SVV. Five equally spaced
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Fig. 1. Solution of inviscid Burgers equation at time T = 0.5 using continuous Galerkin without SVV (top) and with SVV (bottom).
Five equally spaced elements spanning [�1,1] were used, each of which contained 15th order polynomials.
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element spanning [�1,1] were used, each element containing 15th order polynomials. In this example, a
wave cutoff of Pcut = 7 and amplitude of � = 1/16 were applied.

Observe that the SVV has a favourable effect in that it greatly reduces the variation of the solution away
from the discontinuity where the ‘‘wiggles’’ in the solution have been removed. This feature of SVV is con-
sistent with the results shown for Fourier methods in [9] and for Galerkin spectral element methods in [8].
The SVV result away from the discontinuity looks very smooth as SVV dampens the propagating high
frequency contribution generated at the sharp gradient.

2.3.2. Diffusion of a two-dimensional bubble

To provide an example to reinforce our intuition about the influence of SVV when applied to multi-
dimensional problems, we examine the following parabolic equation:
ou
ot
¼ mr2uþ SVVðuÞ ð19Þ
on [0,2] · [0,2] with m = 10�5 and periodic boundary conditions.
To introduce high-frequency information into the initial condition a basic initial condition of

uðx; y; t ¼ 0Þ ¼ sinðpxÞ sinðpyÞ was used applied with a discrete perturbation. To construct the initial con-
dition the basis condition was projected onto the expansion space spanned by the spectral element discret-
isation and then re-evaluated at a discrete set of quadrature points. A perturbation was then introduced by
explicitly setting the value at one point to a large magnitude as compared to its original value. In this exam-
ple we set the function value at the point (x,y) � (0.65, 0.70) equal to 2.0. This procedure is similar in con-
cept to introducing a discrete delta function perturbation, and hence upon projection back to the spectral
element function introduces energy into the high-frequency modes of the element containing the point of
perturbation (and due to C0 continuity may also cause propagation of the effect to neighbouring elements).
For this example, a total of sixteen quadrilateral elements (four per direction) with P = 15th order polyno-
mials per element direction were used. Fig. 2 shows the solution of Eq. (19) with and without SVV at time



Fig. 2. Standard diffusion to time T = 0.1 (left); standard diffusion with SVV Pcut = 7, �SVV = 0.1 (centre) and standard diffusion with
SVV Pcut = 3, �SVV = 0.1 (right).
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T = 0.1. Fig. 2 (left) shows the solution with no SVV; Fig. 2 (centre) shows the solution with SVV (Pcut = 7,
�SVV = 0.1); and Fig. 2 (right) shows the solution with SVV (Pcut = 3, �SVV = 0.1).

From this example we see that the SVV dissipation added to the high mode numbers with respect to the
spectral element discretisation does indeed yield dissipation at the global high wavenumber scales of the
solution (as exhibited in Fig. 2 (centre and right)). Decreasing the SVV wavenumber cutoff (Pcut) from eight
to four produces further dissipation of the high wavenumber features within the solution.
3. Incorporation of SVV into the Navier–Stokes equations

In this section we discuss how SVV can be incorporated into a velocity-correction splitting scheme to
discretise the incompressible Navier–Stokes equations [17]. The incompressible Navier–Stokes equations
can be written as
ou

ot
þNðuÞ ¼ � 1

q
rp þ mLðuÞ; ð20Þ

NðuÞ ¼ ðu � rÞu; ð21Þ
LðuÞ ¼ r2u. ð22Þ
The temporal discretisation adopted in this work is a projection scheme, based on backwards differencing in
time. As originally described [17], this was characterised as an operator-splitting scheme, but more recently
[18] it has been shown that the method is one of a class of velocity-correction projection schemes.

The projection scheme requires the solution of a pressure Poisson equation to (approximately) maintain
solenoidality of the velocity. Backwards time differencing is used to approximate a derivative at the new
time level (n + 1) through
otðÞðnþ1Þ ¼ 1

Dt

XJ

q¼0

aqð Þðn�qþ1Þ þOðDtÞJþ1 ð23Þ
and in addition, a method is needed to explicitly extrapolate previous terms to the new time level, which is
achieved through polynomial approximation
ð Þðnþ1Þ ¼
XJ�1

q¼0

bqðÞ
ðn�qÞ þOðDtÞJ . ð24Þ
The discrete weights aq, bq, for schemes of order up to J = 3 appear in [17,3].
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The time-step for the velocity-correction scheme commences with the solution of a pressure Poisson
equation, followed by a pressure-gradient update
r2pðnþ1Þ ¼ � q
Dt

$ � u� ð25Þ
where
u� ¼
XJ

q¼1

aquðn�qÞ � Dt
XJ�1

q¼0

bqNðuðn�qÞÞ
and augmented with a pressure boundary condition
onpðnþ1Þ ¼ �qn �
XJ�1

q¼0

bqðNðuðn�qÞÞ þ m$� $� uðn�qÞ þ otu
ðn�qÞÞ; ð26Þ
where n is the domain unit outward normal. Eq. (26) is an extrapolation of the Neumann pressure bound-
ary condition on boundaries where no other condition is explicitly set. The enforcement of the solenoidality
of $2uðn�qÞ ¼ $$ � uðn�qÞ � $� $� uðn�qÞ in forming Eq. (26) is essential to the time-accuracy of the scheme
[17]. The step is completed by applying a viscous correction through the solution of a Helmholtz (elliptic)
equation for u(n+1)
r2uðnþ1Þ � a0

mDt
uðnþ1Þ ¼ u� � Dt

q
$pðnþ1Þ. ð27Þ
System (27) is actually, a set of scalar Helmholtz equations augmented with appropriate velocity boundary
conditions at time (n + 1)Dt. The use of higher derivatives in computing the rotational forms used in the
pressure boundary conditions implies the use of a high-order spatial discretisation in the algorithm of
[17], but other forms of the velocity-correction schemes do not carry this restriction, as pointed out in [18].

In our SVV implementation we start with the pressure Poisson equation given by Eq. (25) with boundary
conditions given by Eq. (26). However the final Helmholtz step (27) is now augmented with a SVV operator
as defined in (7) and so we solve
r2uðnþ1Þ þ SVVðunþ1Þ � a0

mDt
uðnþ1Þ ¼ u� � Dt

q
$pðnþ1Þ ð28Þ
with appropriate velocity boundary conditions at time (n + 1)Dt. We note that in Eq. (28) the SVV term is
scaled by the Reynolds number since the kinematic viscosity, m, which appears in the Helmholtz constant term
scales both the diffusion and SVV terms. As discussed in Section 2.2 we solve the pressure Poisson and Helm-
holtz equations using a standard Galerkin projection with a C0 spectral/hp element spatial discretisation.
4. Demonstrative fluid flow examples

In this section we provide three incompressible fluid flow examples, each of which demonstrate different
aspects of the use of SVV. The incompressible fluid version of the spectral/hp element code N ejTar [3,19]
which is based on the continuous Galerkin method was employed for these simulations.

4.1. Two-dimensional Kovasznay flow

The first Navier–Stokes example we present is the solution of Kovasznay flow. The purpose of this exam-
ple is to demonstrate that the addition of SVV as proposed does not destroy the expected convergence
properties of the spectral/hp element method being employed. Kovasznay flow represented the laminar flow
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behind a two-dimensional grid [3], and is flow for which we have an exact solution to which to compare our
numerical simulations. The steady-state solution is a function of the Reynolds number, Re, and is of the
form
Fig. 3
superim
uðx; yÞ ¼ 1� ekx cosð2pyÞ; ð29Þ

vðx; yÞ ¼ 1

2p
ekx sinð2pyÞ; ð30Þ
where k = Re2/2 � (Re2/4 + 4p2)0.5. A rectangular domain given by [�0.5, 1] · [�0.5,1.5] with Dirichlet
conditions obtained from the above solution. Following [8], two domains were used, one consisting of eight
quadrilateral elements and one consisting of two triangular elements as shown in Fig. 3. The computed
steady-state streamline pattern for Re = 40 is plotted in Fig. 3 (right).

To understand the influence of SVV on the convergence properties of spectral/hp methods, we undertook
a parameter study for different polynomial orders and SVV parameters. The results are summarised in Ta-
ble 1 where comparisons of the error at steady-state at Re = 40 with and without SVV are shown. The two
SVV parameters were computed as follows: P cut ¼ ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
P þ 1
p

Þ � 1 and �SVV = 1/(P + 1).
Observe that SVV does modify the solution slightly, but in these reasonably resolved cases, it does not

destroy the expected convergence. To further illustrate this fact, we plot in Fig. 4 the L2 error versus num-
ber of modes for the quadrilateral mesh. The SVV parameters are taken as previously mentioned. Observe
that exponential convergence is still maintained even with the addition of SVV. Note that the slight stair-
case effect evident in the plot is due to the staircase nature of the integer parameter Pcut (rounding is em-
ployed when exact integer values are not obtained, and hence a slight staircasing of the parameter results).

4.2. Two-dimensional double shear layer flow

To illustrate the stabilising effect of SVV, we consider the double shear layer problem examined in the con-
text of under-resolution in [20,21]. The problem consists of solving the two-dimensional incompressible
Navier–Stokes equations on a periodic box of length two (i.e. [�1,1] · [�1,1]). The initial conditions are given
as
uðx; yÞ ¼ tanhð�ðy þ 0.5ÞÞ fðx; yÞj � 1 6 x 6 1;�1 6 y 6 0g;
¼ tanhð�ð0.5� yÞÞ fðx; yÞj � 1 6 x 6 1; 0 < y 6 1g;

vðx; yÞ ¼ d cosðpxÞ fðx; yÞj � 1 6 x 6 1;�1 6 y 6 1g;
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Table 1
Effect of the SVV method on the Kovasznay solution using quadrilateral and triangular grids

Polynomial order (P) Elements �SVV Pcut L1 error L2 error H1 error

6 8 (quads) 0.0 0 2.41534e�04 7.94111e�05 2.25481e�03
6 8 (quads) 1/7 5 2.37631e�04 7.93659e�05 2.25958e�03
8 8 (quads) 0.0 0 2.95956e�06 7.26612e�07 2.55962e�05
8 8 (quads) 1/9 6 2.39061e�06 7.73207e�07 2.83645e�05
10 8 (quads) 0.0 0 2.49826e�08 4.50168e�09 1.81744e�07
10 8 (quads) 1/11 7 4.35637e�08 1.18875e�08 5.08203e�07

9 2 (triangles) 0.0 0 0.206259 0.0906154 0.816686
9 2 (triangles) 1/10 6 0.205844 0.0904501 0.814678
15 2 (triangles) 0.0 0 0.00799273 0.00105305 0.0223986
15 2 (triangles) 1/16 8 0.00769555 0.00100951 0.0215664
17 2 (triangles) 0.0 0 0.00174882 0.000179393 0.00453809
17 2 (triangles) 1/17 8 0.00168793 0.000171647 0.00436712

All comparisons were done at steady-state for Re = 40.
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Fig. 4. Spectral (exponential) convergence is demonstrated for the exact Kovasznay Navier–Stokes solution using the SVV method.
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where � = 40.0 and d = 0.05, and the kinematic viscosity is taken as m = 10�4. Given these initial conditions,
the perturbed shear layers rolls up into two vortices with trailing arms. For the purposes of our numerical
experiment, we consider an 8 · 8 evenly-spaced quadrilateral mesh, each element containing 15th order
polynomials. Using second-order time integration with a time step Dt = 0.0005, we integrate the solution
to final time T = 1.87 upon which we can compare with the solutions in [21]. In Fig. 5 (left) we present
the solution the second-order time integration with no SVV added. The solution remains stable and pro-
duces a result in agreement with [21].
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Fig. 5. Contours of vorticity at time T = 1.87. (Left) second-order time integrator with no SVV; (centre) first-order time integrator
with SVV enabled (Pcut = 7, �SVV = 5.0) and (right) first-order time integrator with SVV enabled (Pcut = 7, �SVV = 10.0).
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If we reduce our time integration order, however, the solution becomes unstable (at a time T < 1.0). This
instability is to be expected since with the low viscosity of this problem we expect the imaginary eigenvalues
of the advection operator to be dominant in the time stepping problem. Since the first order explicit time
integration of the advection operator has a stability region which does not encompass the imaginary axis
the solution becomes unstable. The purpose of this experiment is to see if SVV can be used to stabilise the
solution without drastically destroying the anticipated result. Keeping all parameters the same but reducing
the time integration order to first-order, we now introduce SVV with Pcut = 7 and different values of �SVV.
In Fig. 5 we show the SVV results with �SVV = 5.0 (centre) and �SVV = 10.0 (right).

We note that the solution remains stable to time T = 1.87 even with first-order integration which was
previously unstable at T < 1.0. Further, the SVV solutions look qualitatively similar to the original resolved
solution. Note that the nature of the discrepancies between the SVV and non-SVV solutions are consistent
with the under-resolution studies in [21]; SVV�s removal of the high-frequency information produces a sta-
ble solution where the high-frequencies are under-resolved.

4.3. Transition and turbulence in a three-dimensional triangular duct

In this third example, we demonstrate that SVV is not the solution to all problems which arise due to the
lack of inconsistent quadrature. We consider the effect of inconsistent quadrature and associated aliasing
errors by simulating transition to turbulence of incompressible flow in a duct with its cross-section being
an equilateral triangle as previously studied in [2].

The laminar fully-developed solution is known analytically [3]. Random disturbances are introduced in
the flow and then integrated in time until these disturbances start decaying or growing in time. All simu-
lations were performed in the domain shown in Fig. 6 with the cross-section discretized using one triangular
element and 16 Fourier modes the streamwise (homogeneous) direction. A duct length of three De was used
and the Reynolds number was defined as Re = UDe/m where U is the average velocity and De is the equiv-
alent (hydraulic) diameter. For Re 6 500 all disturbances decay, but for Re = 1250 the flow goes through
transition, and a turbulent state is sustained. Typical results are shown in Fig. 6.

We have performed four simulations at Re = 1250 corresponding to different combinations of polyno-
mial order (P), quadrature order (Q) and SVV parameters. In the first simulation, shown in Fig. 7(a), we
consider the case where Q = P + 2, where P = 15. The forces on the three walls of the duct are plotted as a
function of time. From symmetry considerations, we expect that the statistical averages of the three forces
are identical, but obviously the symmetry in the mean is not preserved here. In Fig. 7(b) we plot the forces
for the case with Q = P + 2 with SVV employed (Pcut = 11, �SVV = 1/16), and in Fig. 7(c) we present the
case with consistent-integration where (Q = 3(P + 1)/2) [2]. From these three cases, we see that SVV as



Fig. 6. Duct flow domain: the cross-section is an equilateral triangle and the streamwise length is three times the triangle edge. On the
left we show a frame of the entire domain with flood contour cut-planes of the fluid velocity in the streamwise (w) direction. In the
centre and on the right we present flood contour cut-planes of the fluid velocity in the streamwise (w) direction with arrows denoting
the velocity in the crossflow (uv) directions at z = 1 and z = 2 respectively.
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Fig. 7. Wall shear forces as a function of time for (a) (Q = P + 2), no SVV; (b) (Q = P + 2), SVV: Pcut = 11 and (c) (Q = 3(P + 1)/2),
no SVV.
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Table 2
Mean shear forces on each wall versus the quadrature order employed

Quadrature order Wall 1 Wall 2 Wall 3

P + 2 (no SVV) 0.0048 0.0054 0.0054
P + 2 (SVV; Pcut = 3, �SVV = 1/16) 0.0048 0.0052 0.0053
P + 2 (SVV; Pcut = 11, �SVV = 1/16) 0.0047 0.0054 0.0053
3
2 ðP þ 1Þ (no SVV) 0.0053 0.0053 0.0053
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defined in this paper does not correct for the quadrature crimes committed in this example (in this case, the
anisotropy of the quadrature point distribution upon which the collocated nonlinear terms are evaluated is
the culprit); only consistent integration as presented in [2] rectifies the problem. A fourth case was also con-
sidered using the SVV parameters Pcut = 3, �SVV = 1/16. This case demonstrated that employing more SVV
does not yield a better solution.

In Table 2, we present for all four cases the mean shear force calculated for each of the walls. Statistical
averaging was started 40 convective units (over 13 duct lengths) after the initial perturbation period of 10
convective units; statistical averages were taken over 150 convective units (50 duct lengths). Only the con-
sistent integration results provide the expected statistical results.
5. Summary

In this paper we have presented a SVV formulation for quadrilateral and triangular multi-dimensional
spectral/hp element methods based upon filtering with respect to an orthogonal basis. We have demon-
strated that the formulation is symmetric and semi-positive definite. Through numerical flow examples
and test cases we have shown that SVV does not degrade the exponential rate of convergence expected from
spectral/hp element discretisation of smooth solutions. As also reported in previous papers [8,14] we have
observed that SVV can be used to stabilise solutions. We have also seen, however, that SVV is not neces-
sarily a means of fixing all errors associated with problems such as consistent-integration. Nevertheless one
aspect of the formulation which has not been fully investigated is the choice of different filter functions bQ.
As discussed in Section 2.2.3 there are a variety of choices of bQ which can be considered, and we have ob-
served that the filter matrix only needs to be positive and diagonal to ensure the symmetric semi-positive
definite property of the discrete SVV operator. As discussed in [13] there is potential to design nonlinear
(solution dependent) filters which could be applied in large eddy simulation. However we also note that
a more judicious choice of bQ might lead to a better de-aliasing property for the triangular expansion ap-
plied in the last test case of turbulent flow in a channel. Nevertheless we can conclude that SVV provides
another computational tool for stabilisation of spectral/hp element methods as applied to the incompress-
ible Navier–Stokes equations.
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